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  Computer Vision applications have traditionally used CNN based model architectures
  With the success of Transformers [1] in NLP tasks, self attention based architectures were explored for vision    

   tasks as well.
  Vision Transformer (ViT) [2] proposes to apply self attention to 16 x 16 patches of images, and use the              
   transformer encoder model.

  Hardware accelerators designed for vision tasks are optimised for CNNs, and are not suitable for transformer    
   based models.

  We seek to look at hardware accelerators designed for transformer models (NLP based) and design an              
   accelerator for ViT adapting from those.

Introduction

  The ViT model is primarily the encoder of the                 
   transformer. Patch embeddings fed as input to model.

  Involves Multi-head self attention(MHA)/ residual            
   blocks, feedforward (FF) blocks, layer normalisations     
   and softmax layers. 

  L such encoder layers are stacked to form the model.
  The MHA and FF operations are effectively comprised    

   of Matrix Multiplication and Matrix Vector Multiplication 
   operations.

  

Computations involved in ViT
  ViT inference when run over a series of images has an   

   advantage over NLP transformers – input sequence        
   length is typically constant.

  We propose a PE block based architecture with               
   granular pipeline, for Multi-head Self Attention               
   computations.

  Separate optimised block for Softmax.
  Two PE blocks, each having k PE units for computing all 

   the heads concurrently. 
  Operations scheduled among the two blocks at a           

   granular level, for maximum hardware utilisation. 
efficiency.

Proposed Architecture (Scheduling)

Proposed Architectecture (Design)

  Extend the design to the other layers involved in the     
   transformer model, and other vision transformer            
   models.

  Benchmark the implemented design for comparison      
   with the state-of-the-art, and PiM designs like [7]. 

 

Future Work / Ongoing Steps
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Review
  Wang et al. [3] proposes hardware accelerator for vision        

   transformer models. However, it involves a single PE unit       
   without any emphasis on scheduling schemes.

  Hardware accelerators for NLP based transformers have         
   been designed [4] – [7], with some specifically targeting        
   MHA layers. Optimised designs proposed for non linear units.

  Many of these do not exploit potential for concurrent              
   computations.  

  We adopt the idea of having a granular pipeline between       
   two processing blocks from [7], and seek to parallelise           
   operations across heads – maintaining a high HUE. Fig. 1 : Proposed scheduling scheme among the PE blocks.

Fig. 2 : Proposed Overall Architecture.

Fig. 3 : A PE Block

Fig. 4 : Memory Access Patterns Fig. 5 : A PE Unit

Discussion
  Proposed architecture optimally schedules operations     

   that could be done concurrently, using 2 PE blocks;        
   could potentially achieve better latency than [3]-[5]       
   which have a single PE block. 

  Higher hardware utilisation efficiency achieved over [6]  
   which uses separate units for the computations.


	Slide 1

