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Abstract—Vision Transformer models, such as ViT, Swin
Transformer, and Transformer-in-Transformer, have recently
gained significant traction in computer vision tasks due to their
ability to capture the global relation between features which
leads to superior performance. However, they are compute-heavy
and difficult to deploy in resource-constrained edge devices.
Existing hardware accelerators, including those for the closely-
related BERT transformer models, do not target highly resource-
constrained environments. In this paper, we address this gap and
propose ViTA - a configurable hardware accelerator for inference
of vision transformer models, targeting resource-constrained
edge computing devices and avoiding repeated off-chip memory
accesses. We employ a head-level pipeline and inter-layer MLP
optimizations, and can support several commonly used vision
transformer models with changes solely in our control logic. We
achieve nearly 90% hardware utilization efficiency on most vision
transformer models, report a power of 0.88W when synthesised
with a clock of 150 MHz, and get reasonable frame rates - all
of which makes ViTA suitable for edge applications.

Index Terms—Vision Transformer, Swin Transformer, Hard-
ware Accelerator, Computer Vision, Edge Computing, FPGA

I. INTRODUCTION

The success of transformer models for NLP applications has
led to self-attention-based models being applied to computer
vision tasks. Although the initial works in this direction lacked
scalability, subsequent works such as Vision Transformers
(ViT) [1], Swin Transformers [2], TNT [3], and Data-efficient
image Transformers (DeiT) [4] that adopted model architec-
tures similar to the NLP-based Transformer [5], replacing
word tokens with image patches, have yielded state-of-the-art
(SOTA) results.

For some applications, such as autonomous driving and
drone navigation, computer vision tasks have demanded real-
time implementations on the edge. This has led to the de-
velopment of energy-efficient hardware accelerators such as
Eyeriss [6], [7], ShiDianNao [8], [9] for inferences of tra-
ditional CNN-based models. With vision transformer models
outperforming the conventional CNN-based models, exploring
energy-efficient hardware accelerators for ViTs, which could
be implemented at the edge, is similarly important. Since the
vision transformers are closely related to the BERT trans-
former architecture (by Vaswani et al. [5]), key insights can
be derived from their acceleration. However, it has to be
noted that most of the proposed accelerators for NLP tasks,
including [10], [11] do not target edge devices, and their
model parameters are quite different from that of the vision
transformers.
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FPGAs for edge applications are useful because they pro-
vide flexibility in computation while still enabling very low
latencies. For example, the Zynq Multiprocessor System-on-
Chip (MPSoC) ZC7020 [12] and low-end Ultrascale MPSoC
ZU3EG [13], [14] are some FPGAs that can be used in appli-
cations such as drones and similar low-energy vision oriented
tasks. The defining characteristics of such platforms are limited
parallelism (100s of DSP units rather than 1000s) and limited
on-chip memory (100s of KB of Block RAM (BRAM) rather
than MB). Naturally, this means any application targeting
such platforms should focus on using the limited available
parallelism and minimizing the amount of data transfer to and
from off-chip memory.

In this work, we propose ViTA - a hardware accelerator
architecture and an efficient dataflow that supports several
popular vision transformer models, targeting such resource-
constrained FPGA devices. We evaluate the performance of
ViTA for these models with commonly used configurations in
terms of both hardware utilization efficiency and throughput.

The remaining of this paper is organized as follows. We
provide a primer of the different vision transformer models, the
computations involved therein, and existing related hardware
accelerators in Section II. We propose ViTA - an architecture
suitable for edge devices and an efficient dataflow within typi-
cal memory bandwidth constraints in Section III. We evaluate
our design for different model architectures and configurations
in Section IV. Section V concludes the paper.

II. PRELIMINARIES AND RELATED WORK

The Vision Transformer (ViT) [1] is one of the first proposed
transformer-based models for vision tasks, and is similar to
the encoder stack of the BERT transformer [5]. In ViT, the
input image is split into patches of 16×16 pixels, which
constitute a linear sequence of tokens, similar to words in
the case of BERT. Its success motivated the development of
other transformer-based models, such as the Swin Transformer
[2], Data-efficient image Transformers [4], and Transformer-
in-Transformer [3]. The key operation of all these models is
the Multi-head Self Attention (MSA), applied on the sequence
of image patches, followed by fully connected layers. The
variation among these models is related to how these attention
blocks are applied to the input patches, and the model pa-
rameters such as latent space dimensions, patch sizes, and the
number of heads, for each of their variants. Figure 1 illustrates
some of these model architectures.

There have been a few prior works on hardware accelerators
for vision transformers [15] [16] [17]. Wang et al. [15] target



(a) ViT / DeiT

(b) Swin Transformer - two successive
Swin Transformer blocks have a windowed
and shifted windowed MSA

Fig. 1: Vision Transformers under consideration. The Swin
Transformer has the same set of blocks as ViT, but the
MSA is applied on disjoint windows on the image, and the
patch merging blocks scales the image dimensions down in
successive stages.

an application-specific integrated circuit (ASIC), but do not
consider any off-chip data movement optimizations. Li et
al. [16] and Sun et al. [17] target a large FPGA device,
which enables storing all the weights and activations on-
chip, thereby allowing a larger design space for exploration.
However, edge computing devices, such as the Zynq ZC7020
MPSoC, pose more severe design constraints, owing to the
lower on-chip computational resources, lower BRAM memory,
and low bandwidth for off-chip access. In particular, off-chip
memory accesses typically involve high energy and should be
minimized.

As could be seen from the model architectures, the vision
transformer models are quite similar to the BERT transformer
[5]. There have been prior works on hardware accelerators
targeting different stages of the BERT transformer. Liu et al.
[18] proposed an accelerator for a quantized BERT model,
and Lu et al. [10] proposed an accelerator design for the MSA
and feed-forward blocks, with dedicated computation units for
Softmax and LayerNorm. However, since NLP applications
are typically not deployed at the edge, these target higher-end
FPGA devices, and do not consider data movement from off-
chip storage devices. ReTransformer [19] proposed a Re-RAM
based in-memory computation engine with granular pipeline
to accelerate the self-attention stage. In-memory computations
typically pose additional limitations in terms of correctly
aligning the results into the in-memory compute unit, which
can be avoided in FPGA-based digital designs. However, the
granular pipeline aspect of this work could potentially reduce
the intermediate memory requirements while ensuring high
efficiency, and we could explore this aspect in our design.

III. PROPOSED ARCHITECTURE

A. Model Architecture

We base our design and analysis on the ViT-B/16 model,
and in Section IV show how it can be extended to other vision
transformers. This model considers a patch size (P×P ) where
P=16, having L=12 layers, a latent vector dimension (D) of
768, k=12 heads, a head level latent vector dimension (Dh =
D/k) of 64, and an MLP hidden layer dimension (M) of 3072.
We consider an image dimension (H×W ) of 256×256, thus
giving the sequence length (N) as (H.W )/P 2 = 256.

We follow a post-training quantization approach, with all
the weights and activations quantized to int8 representations
for inference. We observe that when evaluated on ViT, this
results in almost no degradation (<0.04%) in the top-1 test
accuracy on the ImageNet [20] dataset. We target the Zynq
ZC7020 MPSoC for our design.

B. Hardware Architecture and Dataflow
As noted previously, targeting edge computing devices

poses multiple constraints. Table I shows the memory require-
ments for the ViT-B model, which is beyond the typical on-
chip memory capacity of edge FPGA devices, indicated in
Table II. This necessitates most of the data to be stored in off-
chip DRAMs, and brought into the on-chip BRAM cells when
required, while minimizing back-and-forth data movement.

Input/Weights Input WQ WK WV MSA Weights
Memory (in KB) 192 576 576 576 576

TABLE I: Memory requirements for the input activations and
weights for the ViT-B/16 model. The memory requirements
for intermediate results are significantly higher.

Zynq ZC7020 MPSoC Zynq ZCU102
LUT6 53200 274080

DSP slices 220 2520
BRAM 630 KB 4 MB

TABLE II: Resources available on the Zynq ZC7020 MPSoC
(an embedded platform) vs. the Zynq ZCU102 MPSoC (a
high-end platform)

Most of the computations involved in the inference of vision
transformers are matrix multiplication operations. Different
schemes such as input-stationary, weight-stationary, or block
multiplication can be adopted to meet our on-chip memory
constraints. We note that in all the vision transformer model
architectures in Fig. 1, multiple layers of self attention and
MLP blocks are stacked one after the other. While the weights
are different for each of these layers, the input activations
for a layer are passed from the previous layer. This suggests
that an input stationary scheme, with the weights being loaded
onto the chip would be ideal. Once the input activations are
loaded, the results of each layer are stored in the same on-chip
location, and only after all the layers are computed, the final
results are written back to the off-chip memory. Given this
arrangement, it would be ideal to hide the off-chip memory
access latency involved in fetching the weights, by scheduling
computations and weight fetching appropriately. Our proposed
approach is to implement this schedule at a column level of
the weight matrix. For each weight matrix, BRAM cells that
can store two columns of weights are allocated. The access
latency can be hidden by ensuring that while one column of
the weights is being operated upon, the other column is fetched
from off-chip memory.

1) Architecture for MLP Layer: As noted in Table III, the
major portion of MAC computations is in the MLP layer,
accounting for nearly 60% of the total MAC operations across
the different model variants. Thus, it is pertinent to accelerate
this computation efficiently while designing the accelerator.
The design for a simple feed-forward layer could be trivial,
with the same weights and biases being applied on multiple



Model Image Dim. MSA MLP Patch Merging
ViT-B/16 [1] 256× 256× 3 36.8% 63.2% -
ViT-B/16 [1] 224× 224× 3 36.1% 63.9% -
DeiT-S [4] 224× 224× 3 38.6% 61.4% -
DeiT-T [4] 224× 224× 3 43.1% 56.9% -
Swin-T [2] 224× 224× 3 31.9% 63.8% 4.3%

TABLE III: Number of MAC operations in the MSA, MLP,
and Patch Merging layers as a fraction of the total number
of MAC operations involved for the considered models. We
ignore the Softmax, LayerNorm, and Residual Connection
layers.

input activations concurrently. However, we observe that the
memory required to store the hidden layer, with dimensions
of 256×3072 for the ViT-B model, is beyond the total on-
chip memory capacity of the target device. To avoid repeated
DRAM accesses, we employ the inter-layer optimization tech-
nique proposed in [21], using two sets of MAC units. As
elaborated in Fig. 3, the hidden layer values computed in the
first set of MAC units are broadcast to the second set of MAC
units through the non-linear activation, to compute the partial
products corresponding to the output layer.

This leads to one of the key ideas that inspire our design.
In order to process this in a pipelined fashion, we allocate
resources such that the hidden layer value computations and
the output layer partial product computations take approxi-
mately equal times. This ensures they can be pipelined with
minimal stalls. This implies that we should dedicate an equal
number of MAC units to compute the hidden and output layers.
While the MACs dedicated to the hidden layer accumulate the
results over multiple cycles, those dedicated to the output layer
compute different partial products in each of those cycles.

2) Architecture for MSA Layer: For all the model archi-
tectures illustrated in Table III, the self attention operation
also accounts for about 30-40% of the total computations.
Consequently, we try to optimize the hardware accelerator
design to suit these computations, while adhering to the above
scheme for the MLP layer. The MSA layer involves the
following computations, where z refers to the input to the
layer, i to the head number, and k to the total number of
heads :

[Q|K|V ]i = z.[WQ|WK |WV ]i ,WQ/K/V ∈ RDxDh

SAi(z) = Softmax(QiK
T
i /

√
Dh).Vi

MSA(z) = [SA1(z), ..., SAk(z)].W
msa ,Wmsa ∈ RDxD

As illustrated in the above equations, the MSA block
involves computing self attention on each head, and finally
concatenating the results. Although the operations on each
head can be parallelized, the on-chip resource constraints
dominate the design choice. Processing multiple heads implies
that the computed values (say Q, K, and V ) for all the
heads will have to be staged until the next set of values
(Q.KT , Softmax, and Softmax.V ) are computed. Given
the on-chip memory constraints, storing these intermediate
matrices for all the heads is not feasible. Hence, to avoid
unnecessary data movement to and from off-chip, we instead
perform head-wise computations. Even in the case of head-
wise computation, we have a few dataflow design choices for
the weights and the product computations. As detailed in Sec

II, there have been several works focused on accelerating the
MSA block, such as the ReTransformer [19], which proposes
a row-level fine-grained pipeline for efficiently computing the
self attention block using two PE engines. However, since the
input matrix has been held stationary, the remaining available
memory is not sufficient to hold the required weights for
computing the Q, K, and V for a head. To avoid repeated off-
chip accesses, we, in contrast, store the weights one column
at a time and proceed to the next column once all rows
of input activations are multiplied with this column. As a
consequence of performing the multiplications column-wise,
we can only compute the Q, K, and V matrices in a column-
wise fashion, and hence the QKT and further computations
for the head cannot occur until both Q and K matrices are
completely computed. To optimize the routing congestion and
enable a streamlined dataflow for the weights from the off-chip
memory, we propose a head-level coarse-grained pipeline with
two dedicated sets of processing units with near-equal latency.

3) Overall Architecture and Optimal Configuration: Draw-
ing conclusions from the observations and implications made
on accelerating the MLP and self-attention layer, we propose a
configurable processing element array-based hardware acceler-
ator and the corresponding dataflow, illustrated in Figs. 2 and
4. The PE blocks 1, 2, and 3 together make up the first compute
engine that performs the computations for generating Q, K,
and V , while the PE blocks 4 and 5 form the second compute
engine that performs the QKT and Softmax.V operation,
respectively. We reuse the same PE blocks for computing
the MSA concatenation and the MLP block. The condition
required for efficient acceleration of the MLP layer is to have
equal MAC units dedicated to computing the hidden layer and
output layer. This is ensured by using half the rows in the PE
blocks for computing the hidden layer and the other half for the
output layer. Dedicated units for SoftMax, LayerNorm, skip
connections and non-linear activations have been included,
with the former adapted from [10].

As shown in Fig. 2, k1 × k2 refers to the configuration of
the PE block type I, while k3 × k4 refers to the configuration
of the PE block type II. As illustrated in Fig. 4, in order to
time match the computations in the two compute engines and
enable a head wise pipeline, the optimal values of k1, k2,
k3, and k4 should satisfy D

k1.k2
= N

k3.k4
, subject to the on-

chip resource constraints. Consequently, while PE Blocks 1,
2, and 3 operate on head h, PE Blocks 4 and 5 operate on head
h−1. Similarly, PE Block 4, Softmax Module and PE Block 5
operate at a row granularity within a head. The optimal values
chosen for the ViT-B/16 256× 256 configuration are k1=16,
k2=6, k3=8, and k4=4.

In the next section, we benchmark the performance of this
architecture the considered vision transformer model architec-
tures and compare it against other works on accelerating vision
transformers.

IV. ANALYSIS & EXPERIMENTS

We evaluate the performance of ViTA across different model
architectures in terms of the hardware utilization efficiency
(HUE) [22] of the utilized resources on the FPGA. We choose
a design configuration that works best for the ViT-B/16 model,
while also restricting ourselves to the resources available on
the Zynq ZC7020 MPSoC. This corresponds to the PE blocks



(a) Overall Hardware Accelerator Design

(b) PE unit architecture - the rows share weights. For PE
Blocks - 1, 2 & 3, A=k1 & B=k2, and for PE Blocks 4
& 5, A=k3 & B=k4

Fig. 2: ViTA : Proposed design for the hardware accelerator.
The weight BRAMs are split into two halves as indicated, with
one of them acting as a buffer where a column is being loaded
from off-chip, while the column in the other is being used for
computations.

(a) MLP Block

(b) Scheduling MLP operations in two stages

Fig. 3: Inter-layer optimization for MLP

Fig. 4: Scheduling the MSA computations. PE Block 4,
Softmax Module, and PE Block 5 process in a row-granular
pipeline fashion.

1, 2, and 3 having a k1 × k2 (16 × 6) configuration, while
the PE blocks 4 and 5 have a k3 × k4 (8 × 4) configuration.
We rely on the LUTs, rather than DSP slices, for compute
capability, and ensure that all the memory can be held and
accessed as intended from the BRAM cells. Although the DSP
slices are power efficient, they are limited in number for the

considered FPGA. Moreover, these are optimized for 18bits×
27bits operations, and performing 8bits × 8bits operations on
these would lead to significant under-utilization.

Although the design parameters of the PE array can be
configured at run time, we demonstrate how having a single
fixed configuration also allows for a run-time selection of
the desired model and input image size, without a significant
drop in efficiency. Since the other vision transformer models
are typically made up of the MSA and MLP blocks, we can
infer any of these models on ViTA by changing the control
logic appropriately. For the case of Swin transformer, the W-
MSA is performed on windows of M ×M , where M=7 by
default. This would just correspond to the regular MSA being
performed on N=49 repeatedly over these windows.

When synthesized on the Zynq ZC7020 MPSoC, the design
is run at a clock of 150 MHz, and consumes a power of 0.88W
for the given configuration. The obtained values of HUE and
energy for processing an image are summarized in Table IV.
We ensure that the latency in accessing the off-chip memory
is hidden in all intermediate cases, with the DRAM access
bandwidth well under 1 word/cycle - a reasonable number for
the considered FPGA.

Model Image Dim. HUE fps Energy (J)
ViT-B/16 256× 256× 3 93.2% 2.17 0.406

ViT-B/16 or DeiT-B 224× 224× 3 92.8% 2.75 0.320
DeiT-S 224× 224× 3 87.2% 9.36 0.094
DeiT-T 224× 224× 3 66.2% 19.01 0.046
Swin-T 224× 224× 3 81% 8.71 0.101

TABLE IV: Overall hardware utilization efficiency (HUE),
Frame Rate (fps) and energy for processing one image for
different model architectures - for the optimal architecture
configuration chosen for ViT-B/16 with a 256×256×3 image
dimensions

Table V compares the performance our design against
other vision transformer accelerator designs. As illustrated,
ViTA achieves a significant reduction in power consumption
compared to the other works. Since ViTA is focused on
highly resource-constrained environments, it is difficult to
compare it against other designs in terms of the processing
frame rate. However, for the lower compute capability and
technology node of our target device, the performance scales
comparably with other works. Furthermore, the frame rates
achieved by ViTA for the smaller model variants, such as
DeiT-S, DeiT-T, and Swin-T are reasonable for embedded
applications, such as drone navigation. Moreover, an FPGA
environment makes ViTA reconfigurable for different model
configurations for improved performance. This coupled with
the energy efficiency of ViTA makes it a good choice for
deployment on the edge.

Accelerator Design Target Device Power (W) fps fps/W
Row-wise-acc. [15] ASIC (40nm) * 44.5 *
Auto-vit-acc. [16] FPGA (16nm) 9.40 25.9 2.76

ViTA (ours) FPGA (28nm) 0.88 2.75 3.12
* not reported

TABLE V: Performance comparison of vision transformer
accelerators for DeiT-B on 224×224×3 dimensioned images



V. CONCLUSIONS

We proposed ViTA - a configurable hardware accelerator
and dataflow design that can be employed for inference of ViT
models on resource-constrained edge devices. In particular, we
introduced a head-level coarse-grained pipeline and performed
inter-layer optimization on the MLP layer to avoid unnecessary
intermediate result staging. Our design avoids repeated off-
chip memory accesses, achieves a high resource utilization
efficiency of about 90%, and reports a significantly low power
of 0.88W while having a reasonable frame rate - making it well
suited for various edge applications.
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